Tuesday, June 9, 2009

GATE CS

Which paper should i take CS or IT ?
Before answering this question let me tell you some ground truths . Ask someone in the field of computer science " what is the difference between CS and IT ? " , I promise you one cannot answer because there is no difference between them . Both CS and IT students study the same core subjects of CSE , even the syllabus for both CS and IT papers in GATE is almost same except the software engineering and web technologies part extra for the IT guys .
The scaling or proportionate factor between the number of students taking the CS paper and IT paper is almost 8:1 from the last 2 years statistics . About 40,000 students take the CS paper and around 5000 students take the IT paper . I tell you there are very few opportunities for the guys taking IT paper , less flexibility in the sense the cutoff's are hard to meet to either get direct admission or to be called for written test / interview . Though it may sound a bit harsh but its true . Let me prove you this , by showing some statistics regarding the recent cutoff's for IT at IITK .
Category cutoff for direct admission cutoff for written test / interview
IT GN 99.91 ( 2 ) 99.60 ( 12 )
IT SC 99.50 ( 0 ) 96.50 ( 3 )
IT ST 99.50 ( 0 ) 95.50 ( 1 )
IT PH 99.60 ( 0 ) 98.50 ( 0 )

If i would have been in your place i would have gone for the CS paper , it's my choice . This was just a suggestion , but the ultimate choice is left to you . I hope this would help you in making the decision .

SYLLABUS-

Computer Science & Information Technology - CS

ENGINEERING MATHEMATICS :

Mathematical Logic: Propositional Logic; First Order Logic.
Probability: Conditional Probability; Mean, Median, Mode and Standard Deviation; Random Variables; Distributions; uniform, normal, exponential, Poisson, Binomial.
Set Theory & Algebra: Sets; Relations; Functions; Groups; Partial Orders; Lattice; Boolean Algebra.
Combinatorics: Permutations; Combinations; Counting; Summation; generating functions;
recurrence relations; asymptotics.
Graph Theory: Connectivity; spanning trees; Cut vertices & edges; covering; matching; independent sets; Colouring; Planarity; Isomorphism.
Linear Algebra: Algebra of matrices, determinants, systems of linear equations, Eigen values and Eigen vectors.
Numerical Methods: LU decomposition for systems of linear equations; numerical solutions of non-linear algebraic equations by Secant, Bisection and Newton-Raphson Methods; Numerical integration by trapezoidal and Simpson’s rules.
Calculus: Limit, Continuity & differentiability, Mean value Theorems, Theorems of integral calculus, evaluation of definite & improper integrals, Partial derivatives, Total derivatives, maxima & minima.

COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

Digital Logic: Logic functions, Minimization, Design and synthesis of combinational and sequential circuits; Number representation and computer arithmetic (fixed and floating point).
Computer Organization and Architecture: Machine instructions and addressing modes, ALU and data-path, CPU control design, Memory interface, I/O interface (Interrupt and DMA mode), Instruction pipelining, Cache and main memory, Secondary storage.
Programming and Data Structures: Programming in C; Functions, Recursion, Parameter passing, Scope, Binding; Abstract data types, Arrays, Stacks, Queues, Linked Lists, Trees, Binary search trees, Binary heaps.
Algorithms: Analysis, Asymptotic notation, Notions of space and time complexity, Worst and average case analysis; Design: Greedy approach, Dynamic programming, Divide-and-conquer; Tree and graph traversals, Connected components, Spanning trees, Shortest paths; Hashing, Sorting, Searching. Asymptotic analysis (best, worst, average cases) of time and space, upper and lower bounds, Basic concepts of complexity classes – P, NP, NP-hard, NP-complete.
Theory of Computation: Regular languages and finite automata, Context free languages and Push-down automata, Recursively enumerable sets and Turing machines, Undecidability.
Compiler Design: Lexical analysis, Parsing, Syntax directed translation, Runtime environments, Intermediate and target code generation, Basics of code optimization.
Operating System: Processes, Threads, Inter-process communication, Concurrency, Synchronization, Deadlock, CPU scheduling, Memory management and virtual memory, File systems, I/O systems, Protection and security.
Databases: ER-model, Relational model (relational algebra, tuple calculus), Database design (integrity constraints, normal forms), Query languages (SQL), File structures (sequential files, indexing, B and B+ trees), Transactions and concurrency control.
Information Systems and Software Engineering: information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project, design, coding, testing, implementation, maintenance.
Computer Networks: ISO/OSI stack, LAN technologies (Ethernet, Token ring), Flow and error control techniques, Routing algorithms, Congestion control, TCP/UDP and sockets, IP(v4), Application layer protocols (icmp, dns, smtp, pop, ftp, http); Basic concepts of hubs, switches, gateways, and routers. Network security – basic concepts of public key and private key cryptography, digital signature, firewalls.
Web technologies: HTML, XML, basic concepts of client-server computing.

No comments:

Post a Comment